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FOREWORD

This is a final report on the research project, "Analysis and

Computation of Internal Flow Field in a Scramjet Engine," for the

period January i, 1987 to December 31, 1987. Special attention

during this period was directed to "Investigation of Supersonic
J

Chemically Reacting and Radiating Channel Flow." The work was

supported by the NASA Langley Research Center (Computational

Methods Branch of the High-Speed Aerodynamics Division) through

the grant NAG-I-423. The grant was monitored by Drs. Ajay Kumar

and J. Philip Drummond of HSAD-Computational Methods Branch. the

work, in part, was supported also by the Old Dominion University's

ICAM Project through NASA grant NAG-I-363; this grant was

monitored by Dr. Samuel E. Massenberg, University Affairs Officer,

NASA Langley Research Center, Hampton, Virginia 23665.
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INVESTIGATION OF SUPERSONIC CHEMICALLY
REACTING AND RADIATING CHANNEL FLOW

By

Mortaza Mani z and Surendra N. Tiwari 2

SUMIm,ARY

The two-dimensional time dependent Navier-Stokes equations are used to

investigate supersonic flows undergoing finite rate chemical reaction and

radiation interaction for a hydrogen-air system. The explicit multi-stage

finite volume technique of Jameson is used to advance the governing equa-

tions in time until convergence is achieved. The chemistry source term in

the species equation is treated implicitly to alleviate the stiffness asso-

ciated with fast reactions. The multi-dimensional radiative transfer equa-

tions for a nongray model are provided for a general configuration and then

reduced for a planer geometry. Both pseudo-gray and nongray models are used

to represent the absorption-emission characteristics of the participating

species.

The supersonic inviscid and viscous, nonreacting flows are solved by

employing the finite volume technique of Jameson and the unsplit finite

difference scheme of MacCormack. The specified problem considered is of the

flow in a channel with a ten degree compression-expansion ramp. The calcu-

lated results are compared with the results of an upwind scheme. The pro-

blem of chemically reacting and radiating flows are solved for the flow of

premixed hydrogen-air through a channel with parallel boundaries, and a

channel with a compression corner. Results obtained for specific conditions

indicate that the radiative interaction can have a significant influence on

the entire flow field.

ZGraduate Research Assistant, Department of Mechanical Engineering and Me-

chanics, Old Dominion University, Norfolk, Virginia 23529.

2Eminent Professor, Department of Mechanical Engineering and Mechanics, Old

Dominion University, Norfolk, Virginia 23529.
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Chapter I

INTRODUCTION

In the last several years, there has been a great deal of research

toward development of a hypersonic transatmospheric vehicle. At the

NASA Langley Research Center, the hydrogen-fueled supersonic combustion

ramjet (scramjet) engine has been a strong candidate for propelling such

a vehicle. Both experimental and numerical techniques are being

employed for a better understanding of the complex flow field in

different regions of the engine. Numerical modeling of the flow in

various sections has proven to be a valuable tool for gaining more

insight into the complex nature of these flows [1-5]*.

During the past two decades, a tremendous progress has been made in

the field of radiative energy transfer in nonhomogeneous nongray gaseous

systems. In recent years, radiation heat transfer has received

attention because of its application in fire and combustion research,

entry and reentry phenomena, and hypersonic propulsion. In the

hypersonic propulsion system, the temperature ranges from 1000-5000 K.

In this range, various nonsymmetric molecules such as H20, CO2 and OH

become highly radiative participating. Infrared absorption and emission

of thermal radiation is a consequence of coupled vibrational and

rotational energy transitions. Diatomic molecule is the simplest

*The numbers in brackets indicate references.
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molecule that will undergo such transitions. However, symmetric

diatomic molecules, such as H2, 02 and N2, have no permanent dipole

moment and thus are transparent to infrared radiation. For unsymmetric

diatomic and triatomic molecules, such as OH, CO, CO2 and H20, the

infrared spectrum will consist of fundamental vibration-rotation bands

occurring at the fundamental vibrational frequencies of the molecule

followed by the overtone and combination bands [6].

In the past, radiative transfer analysis, due to the complexity of

the formulations and the computer resource requirements, was limited to

one-dimensional formulations. Even for one-dimensional cases, the non-

gray radiative heat transfer calculations required enormous amount of

computational time. Important works in nongray one-dimensional

formulation are reviewed in Refs. 6-9.

Since the late 1960's, efforts have been directed toward

formulating efficient and accurate multi-dimensional equations for

radiative transfer. Latko and Pomraning [I0] suggested a synthesis

method for solving two-dimensional time dependent radiative transfer

equations. The synthesis method is an attempt to reduce the computer

time requirements by constructing the two-dimensional problem from a

small number of one-dimensional calculations. The method is alternated

from cycle to cycle. On odd cycles, the two-dimensional calculation is

constructed from N one-dimensional x-direction (y:const.) cuts. On even

cycles, the two-dimensional calculation is constructed from _I one-

dimensional y-direction (x-const.) cuts. Berg and Crosbie [II]

developed an exact formulation for the radiative flux and emissive power

for a two-dimensional finite planer, absorbing-emitting gray medium in

radiative equilibrium. Exact expressions were obtained for a medium



subjected to the following types of boundary conditions: (A) cosine

varying collimated radiation, (B) a strip of collimated radiation, (C)

cosine varying diffuse radiation, and (D) a uniform temperature strip.

The solution for the cosine varying collimated radiation model was used

to construct the solutions for the other boundary conditions. The two-

dimensional equations were reduced to one-dimensional equations by the

method of separation of variables.

Tsai and Chan [12] presented a general formulation of radiative

heat flux and its divergence for multi-dimensional radiative problems

involving nongray absorbing-emitting gases. The expressions obtained

are in terms of total band absorptance rather than the spectral absorp-

tion coefficients. Thus the expressions are more compact. Modest [13]

developed a new multi-dimensional model to calculate the spectrally-

integrated total radiative-flux for a molecular gas band based on the

solution of two simple differential equations. This model employs the

exponential-wide band model and, therefore, considerably reduces the

numerical efforts required. Yuen and Wong [14] solved two-dimensional

radiative transfer equations for gray medium by a point alocation method

in which the temperature profile is expressed as a polynomial of a
J

successively higher order. It was shown that the technique provides a

rapid convergence in comparison to the Hottel's Zonal rlethod [15] with

the same number of unknowns. Their approach represents a reduction in

computational time by about one order of magnitude. This technique

requires the evaluation of finite number of single integrals for a

complete solution to the problem.

In the combustion temperature range, some diatomic and triatomic

molecules are highly radiative participating species. Various
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investigators have studied the effect of radiative transfer for channel

flows. Martin and Hwuang [16] solved the energy equation for steam

flowing between two parallel black walls. The flow was assumed to be

steady and the radiation transfer in the flow direction was neglected.

It was shown that the radiative flux peaks at a small distance from the

wall, instead of at the wall. This effect was also noted by Viskanta in

a gray analysis of radiation and convection between plates of constant

temperatures [17]. This is because at the wall the effect of positive

radiant heat flux from the wall is partially cancelled by the negative

flux from the layers of hot gas next to the wall. At small distances

into the stream, however, the flux from both the wall and the hot gas

combine to give a maximum heat flux. Kobiyama et al. [18] studied the

problem of combined radiation and convection for compressible laminar

flow between two isothermal parallel plates. A comparison between

temperature profiles calculated with the treatment of one- and two-

r

dimensional radiation shows a considerable temperature difference at the

entrance region of the heating zone. The problem of combined convection

and radiation in a rectangular duct was also studied by Im and Ahluwalia

[19] for compressible turbulent flows. The moment method was employed

in this study to solve the radiative flux equation. This method reduces

the general radiation transport equations to a set of equations in x, y,

and z directions. It was concluded that the radiative transfer causes

the thermal boundary layer to grow and skin friction to decrease. The

velocity profile was not affected by the radiative heat transfer.

Chung and Kim [20] solved a two-dimensional combined mode heat

transfer problem by using the finite element technique. The effect of

scattering was also included in the radiative formulation. It was
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concluded that the standard Galerkin finite elements may be used if the

convection domination is relatively small (Re Pr < I000). If conduction

energy transfer dominates over radiation, there are few effects of

optical thickness on the temperature profile in the absence of

scattering. For converging channels, the radiation effect on the

temperature profiles is insignificant even when conduction and

convection are small.

Tiwari and Singh [21, 22] investigated the transient radiative

interactions of nongray absorbing-emitting species in laminar fully

developed flows between two parallel plates. The particular species

considered were OH, CO, C02, H20 and different mixture of these

species. Their results demonstrated that, H20 is a highly radiation

participating species as compared to C02, CO and OH. The effects of

radiation increase with increasing plate spacing, and the radiative

transfer is more pronounced at higher wall temperatures and pressures.

It was also shown that optically thin limits overestimate the influence

of radiation. Soufiani and Taine [23] studied the H20-air mixtures for

the above geometry and reached the same conclusions.

James and Edwards [24] added the nongray radiation described by the

exponential model for molecular gas bands to the numerical solution of

turbulent combustion of methane in a planner, enclosed, jet-diffusion

flame. The planner jet of methane was injected with velocity Ufuel into

a stream of air flowing with velocity Uai r parallel to the fuel.

Diffusion-controlled combustion occurred in the mixing region of the

jet. Plane-parallel isothermal black walls symmetrically located above

and below the jet formed the combustion chamber. A soot-free flame was

assumed to exist so that the molecular gas bands determined the thermal

I
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radiative transfer to the walls. In this study, 40 percent of the

computation time was devoted to the radiation calculatiGn. The goal of

the study was to show the effect of radiation upon. combustion

temperatures for different channel sizes. Three channel widths of 0.2,

2.0 and 20.0 meters were selected. It was noted that as the channel

width reduced, the effects of radiation were also reduced, and for the

channel width of O.2m, there was no effect on the temperature profile.

For the numerical investigation of chemically reacting and radiat-

ing flows, an appropriate chemistry model must also be selected.

Depending on the ratio of the chemical and fluid dynamic time scales,

the suitable chemistry model could be a frozen flow model, a finite rate

model, an equilibrium model, or a complete reaction model. In general,

the finite-rate model is the most accurate one. In the last several

years, a number of finite rate chemistry models for hydrogen-air systems

have been introduced in the literature. Rogers and Schexnayder [25]

proposed as many as 60 reaction paths in their model; this is certainly

one of the most complete representatives of hydrogen-air reaction.

Unfortunately, the enormous number of reaction paths and chemical

species involved in the model makes it unfeasible for numerical

investigation of engineering problems. Intermediate level models are

reduced to 12 species, 25 reaction paths, eight species and eight

reaction paths [26]. Except for some inaccuracies during the ignition

delay period, the eight reaction models perform as well as the 25-

reaction path model. Although these models are less tedious than the

60-path model, they are expected to be too costly for use in routine

parametric studies. The global two-step chemistry model of Rogers and

Chinitz [27] is an inexpensive and attractive model for primary

I
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investigation of reacting flows. This model was deduced by fitting the

temperature history of a 28-reaction model [25] used in a series of

constant-pressure stream-tube calculations. There are a number of

limitations to this model, such as ignition phase inaccuracy and a

tendency to overpredict the flame temperature. But as pointed out

earlier, it is considered to be an appropriate model for the initial

parametric study of overall mixing and extent of combustion.

The global two-step chemistry model was used successfully by

several investigators to solve chemically reacting supersonic flows.

Drummond et al. [2] used the global chemistry model to solve the flow in

a rapid expansion nozzle. The governing equations describing the flow

were solved by the two-stage Runge-Kutta method for integrating in time,

and a Chebyshev spectral method for integrating the equations in

space. The results were compared with the two finite difference schemes

of Adam-_oulton and MacCormack. The comparison showed that the spectral

method with the Runge-Kutta Scheme gives the same accuracy on much

coarser grids as compared to the finite-difference procedure. This

results in a significant gain in the computational efficiency. Bussing

and rlurman [28] solved the time-dependent Navier-Stokes equations for

supersonic reacting flows. Several efficient acceleration techniques

were used for calculating steady state chemically reacting supersonic

flows. The techniques included preconditioning the conservation

equations, and a preconditioned multiple-grid accelerator. Chitsomboon

et al. [4] used two-dimensional parabolized Navier-Stokes and

parabolized species equations to investigate supersonic chemically

reacting flows related to scramjet-engine configurations. A linearized,

fully-coupled, fully-implicit finite difference algorithm was used to
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develop a computer code to solve the governing equations by marching in

space rather than time. Results obtained by using the parabolized

formulation were compared with the results obtained by using the

elliptic equations. The comparisons indicated fairly good agreement

between the results of the two formulations.

A more realistic chemistry model was used by Drummond [5] in

numerical simulation of a supersonic chemically reacting mixing layer.

To explore the behavior of such flows, detailed physical models of

convective and diffusive mixing and finite rate chemical reaction in

supersonic flow were developed. The finite rate chemistry model

consisted of eighteen reaction paths and nine species. In this study,

two numerical algorithms were constructed to solve the governing

equations. The first algorithm was developed by modifying the unsplit

finite difference scheme of MacCormack, The second algorithm employed a

hybrid pseudo-spectral technique in the normal direction to the flow for

improved resolution of the reacting flow field. The finite difference

scheme was used in the streamwise direction. It was suggested that more

attention be given to the development of spectral methods that could be

more easily applied to high gradient regions like shocks in supersonic

reacting flows. The case considered with the spectral method was

shockless and a small degree of damping was applied in the regions of

high gradients. Several important conclusions were drawn from this

study, and interested readers should refer to Ref 5. Here, it is

important to point out that the use of a more complete chemistry model

rather than the global model in the fluid dynamics equations did not

result in a set of temporally stiff equations.

!
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Incorporation of the finite rate chemistry model into the fluid

dynamics equations can create a set of stiff differential equations.

The stiffness is due to a disparity in the time scales of the governing

equations. In the time-accurate solution, after the fast transients

have decayed and solutions are changing slowly, taking a larger time

step is necessary for efficiency purposes, but explicit methods still

require small time steps to maintain stability. An eigenvalue problem

associated with stiff ordinary differential equations (ODE) has been

solved to express this point clearly in [29]. The literature related to

stiff differential equations is not reviewed in this study, but there

are interesting reviews of this topic available in Refs° 29 and 30. One

way around the problem is to use a fully implicit method. This method,

however, requires the inversion of a block multi-diagonal system of

algebraic equations. The use of a semi-implicit technique, suggested by

several investigators [28, 31, 32], provides an alternative to the above

problems. In this technique, the source term which is the cause of the

stiffness is treated implicitly, and other terms in the governing

equations are treated explicitly.

The literature survey indicates that a great deal of effort has

been directed toward the formulation of radiative heat transfer

equations. Most applications of these formulations have been restricted

to nonreacting homogeneous systems. Only a limited number of studies

are available on applications of radiative energy transfer in combustion

processes rocket exhaust plume analyses, and fire research. Virtually

no efforts have been made to investigate the interaction of radiation

heat transfer in chemically reacting, viscous, subsonic and supersonic

flows of molecular species.

I



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

i

10

The objective of this study is to investigate the effects of

radiative heat transfer in chemically reacting supersonic flow in a

scramjet combustor. The products of hydrogen-air combustion are gases

such as water vapor and hydroxyl radical. These species are highly

absorbing and emitting. The presence of such gases makes the study of

radiative heat transfer in chemically reacting flows an important

issue. It is essential to employ an accurate and nonoscillatory

numerical scheme to solve the governing equations involving radiative

heat transfer. This is because the rate of radiative heat transfer is

influenced strongly by the temperature and pressure of the medium.

Consequently, another objective of this study is to explore the

feasibility of employing the Jameson's four-stage Runge-Kutta time

stepping scheme [33] for the solution of chemically reacting and

radiating viscous flows. This scheme has proven to be efficient and

robust for the solution of the Euler equations. For the steady state

solution, various techniques can be implemented to accelerate the

convergence [34-36].

A brief discussion of the scramjet engine and the governing

equations are presented in Chap. 2. Chapter 3 provides the formulation

for nongray, pseudo-gray, and optically thin radiation models. The grid

generation technique and solution procedures for the governing equations

are presented in Chap. 4. Discussion of the results for several

specific cases are provided in Chap. 5, and specific conclusions and

recommendations for future studies are provided in Chap. 6.
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Chapter 2

GENERAL FORMULATION

A brief discussion is presented on various components of the

scramjet engine. Special attention is directed to discussion of the

basic equations that are applicable in analyzing the flow field in

different parts of the engine. The relations for the thermodynamic and

chemistry models are also provided in this section.

2.1 Physical System and rlodel

As mentioned in the introduction, the scramjet engine has been a

candidate for propelling hypersonic vehicles. In Fig. 2.1, various air-

breathing and rocket propulsion alternatives are shown [37, 38]. For

_lach numbers of zero to three, turbojet air-breathing systems have the

highest performance. Above Mach number of three, turbine inlet

temperatures constrain performance, and then the ramjet becomes more

attractive. At about a Mach number of six, the performance of the

ramjet is greatly reduced. This is due to dissociation of the reaction

products, which is caused by slowing the supersonic flow to subsonic

flow through the normal shock that exists in a ramjet. Therefore, it is

more efficient to allow the engine internal flow to remain at a

supersonic speed. Thus for Mach numbers of six and beyond, the fixed

geometry scramjet is clearly superior for propelling a vehicle at

hypersonic speed. Hydrogen has been selected as the fuel for the

scramjet due to its capability of cooling the engine and the airframC

and also because of its high impulse level.

11
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The scramjet engine is made up of several identical modules and it

is installed underneath the aircraft as shown in Fig. 2.2. Each module

is made up of inlet, combustor and nozzle regions. As part of the

engine design concept [37], the forebody of the aircraft acts as an

inlet for precompression and the afterbody as a nozzle for post

expansion.

The inlet region starts with the forebody of the vehicle and ends

up with the minimum cross sectional area of each module. In the first

part, the air flow is compressed by the oblique shock generated from the

forebody before it enters the engine. For numericaT solution, the flow

is best represented by the Navier-Stokes equation in the actual inlet

area of the engine. Using the Euler equation away from the wall and the

boundary layer equation near the wall region can be complicated by

oblique shock interaction with the boundary layer. This can cause flow

separation, which means flow can not be represented accurately by these

equations. Three-dimensional Navier-Stokes equations have been employed

by Kumar [1] to investigate the flow field in this region with

reasonable success. Chitsomboon et al. [4] have employed the

parabolized Navier-Stokes equations with limited success.

The combustor region is by far the most complex part of the

scramjet engine. As a result, a great deal of research is directed

toward better understanding of the combustor flow field. The flow in

this region is nearly supersonic, but does have subsonic regions near

fuel injections (Fig. 2.3). The fluid dynamics become complicated by

the fuel injection, flame holding, chemistry, radiation and

turbulence. The flow field in this region is represented by the Navier-

Stokes equations (including turbulence, chemistry and radiation). In

I
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the farfield (downstream of the fuel injection strut, where the flow is

only supersonic), the flow can be represented by the parabolized Navier-

Stokes equations [4].

The nozzle and subsurface of the afterbody provide about fifty

percent of the thrust at r_ach number six [38]. The flow through the

nozzle is supersonic. The combustor exit flow consists of multicom-

ponents of the reacting species, multiple shock, and 3-D viscous

effects. For engineering accuracy, the flow can be represented by the

parabolized Navier-Stokes equations.

2.2 Basic Governing Equations

The two-dimensional Navier-Stokes and species continuity equations

are represented in the physical domain by

@U + B__FF+ BG + H : 0 (2.1)
Bt Bx By

where vectors U, F, G and H are expressed as

p

pU

U = pV F =

pE

Pfj

pU

pU2 + TXX

pUV + _xy

(pE + TXX) U + Txy V + qcx + qrx

G _._

pV

pUV + T
yx

2
pV + T

YY

(pE + _yy)

pvf - pD
j By

V ÷ T

Bf xy
J

u+ +q
qcy ry

H Z

0

0

0

0

I
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The viscous stress tensors in the F and G terms of Eq. (2.1) are given

as

:_x;P _(_x÷_)2_ __u@x (2.2a)

= _ _)u @v
Txy U(T_ + T_) (2.2b)

_yy:P _(_+_) 2___v (22c)@y

The quantities qcx and qcy in the F and G terms are the components of

the conduction heat flux and are expressed as

@T m

qcx = " kTx- pD j=IS[(@fj/@x)hj] (2.3a)

: . @T m

qcy k Ty " pD j=l_ [@fJ/_y)hj] (2.3b)

where T

o Cpj dT; T = 0 Khj = hj + fT o
o

It should be noted here that D represents the effective binary diffusion

coeff_cent and _s used for all species. Assuming that the Lewis number

(s/D) is unity, Eqs. (2.3) reduce to (see Appendix A)

qcx = - _rr @e (2.4a)@x

= _ Yu De (2.4b)
qcy Pr @-y

where

e = h - P/p

The molecular viscosity, u¢ is assumed to be temperature dependent and

it is evaluated from the Sutherland's formula as

3/2 TO + S_ = Uo ( ) T + S (2.5)

!
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where Uo and To are reference values for individual species and S is the

Sutherland constant. In this study, reference values were selected for

pure air because the flow is dominated by nitrogen. The tota] internal

energy E in Eq. (2.1) is given by

u2 + v2 m

E = P/p + 2 + _ hi fi (2.6)
i=I

Specific relations are needed for the chemistry and thermodynamic

models and for the radiativetransport. The chemistry and thermodynamic

models are discussed briefly in the following sections. The formula-

tions for radiative transport are presented in Chap. 3.

Instead of solving the partial differential equations, sometimes it

is desirable to solve the integral form of these equations using the

finite volume method. The integral form of the governing equations can

be expressed as

@
@-'_II Udxdy + I M • n ds + II H dxdy : 0 (2.7)

where n is a normal vector pointing outward, _ is the region of interest

and @_ is the boundary curve. In two-dimensions, the volume has a unit

depth. The second order tensor M in Eq. (2.7) is defined by

_I: F i + G i (2.8)
, x y

where F and G are defined in Eq. (2.1). Equation (2.7) can be written

in Cartesian form as

@--- I,F Udxdy + J" (Fdy - Gdx) + Ff H dxdy : 0 (2.9)
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The finite volume formulation is used with the Runge-Kutta time-stepping

scheme. The details of the formulation and the solution schemes are

presented in Chap. 4.

2.3 Chemistry rlodel

For the numerical solution of reacting flows, a chemistry model is

needed to represent the combustion process. The chemistry model used in

this study is the two-step, global, finite-rate, hydrogen-air combustion

model developed by Rogers and Chinitz [27]. This chemistry model was

deduced from a 28 reaction model and is adequate for initial

temperatures between 1,000 K and 2,000 K and for equivalence ratios

between 0.2 and 2.0. In the first step, hydrogen and air react and

produce hydroxyl radical, and in the second step, hydroxyl radical and

hydrogen react to produce water vapor. The reactions are expressed as

where Kf. andI Kbi

constants respectively.

Arhenius equation as

%
H2 + 02 _ 2 OH

KbI

(2.10)

20H + H2 K_f2 2 H20 (2.11)

Kb2

represent the forward and reverse reaction rate

The relations for Kfi are obtained from an

Ni

Kfi : Ai(¢)T exp(-Ei/RT ) (2.12)
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The values of the parameters Ai(¢), Ni, and Ei in Eq. (2.12) are

At(¢) : (8.917 ¢ + 31.4331¢

- 28.95)x 1047 ~ cm3/g-mol-S

E1 = 4865 Cal/mol; N1 = -10.

A2(¢) : (2. + 1.333/¢

- .833¢)x1064 ~ cm6/mol 2 - s

E2 = 42500 Cal/mol; N2 = -13

where @ is the fuel-air ratio.

evaluated by

The reverse rate constants can be

where

Kf i

Kb =

KI = 26.164 exp(-8992/T)

K2 : (2.682x10 -6) (T) exp(69415/T)

(2.13)

Knowing the reaction rate constant Kfi and Kbi the production of species

can be evaluated from the law of mass action. Consider the general

chemical reaction

N Kf i N
i

_ _j,i Cj------- _
j=l "---- j=l

Kb i

" C i:1,2 ,m (2 14)
uj,i j '....

where vj,i and vj',i
represent the stoichiometric coefficents of the

reactants and products respectively and N is the number of species. The

!



I

I
I
I

I
I

i
I

I
I

i

I
I

I
|
I

I

I

2O

law of mass action states that the rate of change of concentration of

species j by reaction i is given by [39]

I I I

(_j) : (vji - uji) [Kf

N , N I !

c_Ji _ Kb _ C_ji]
i j=l J i j=l

(2.15)

The net rate of production of species j in all reactions is given by

m

C" : S (Cj)i
J i:l

(2.16)

where m is the number of reactions. Finally, the chemistry source

terms, on a mass basis, are found by multiplying the molar changes and

corresponding molecular weight

w. : _. M. (2.17)
J J J

By applying the law of mass action to the global model, the chemistry

source terms of the four species are obtained as

+ 2
C02 : - Kfl CH2 C02 Kbl COH (2.18)

= 2 C2H20)CH20 2(Kf2 COH CH2 - Kb2
(2.19)

CH2 : C02 - 1/2 _H20
(2.20)

where
COH : " (2 C02 + _H20)

Cj = p fj/Mj

(2.21)
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2.4 Thermodynamic Model

The specific heat of individual species, C
Pi'

linear function of temperature, i.e.,

is assumed to be a

Cpj = aj T + bj (2.22)

where aj and bj are constants which are obtained by curve fitting the

thermochemical data of Ref. 40. The numerical values of these constants

are given in Table 2.1. The specific heat of the mixture is computed by

summing specific heats of individual species weighted by species mass

fraction

m

: S C f (2.23)

P j:1 Pj j

The static enthalpy of the mixture can be expressed as

m T

h : s [h_ + f Cpj dT] fj (2.24)
j=1 TO

The total enthalpy can now be evaluated as

H = h + 0.5 (u2 + v2) (2.25)

Combining Eqs. (2.22),

expressed as

(2.24) and (2.25i, the total enthalpy is

aj T2
m_ [h_ +T + bj T] fj + 0.5 (u 2 + v 2)

j:l
(2.26)
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where h_ is the sensible enthalpy of individual species at a reference
J

temperature (TO = 0 K). The gas constant for the mixture also is

evaluated by a mass weighted summation over all the species as

m

: S f.R. (2.27)
J J

j=l

The equation of state for the mixture of the gases therefore can be

written as

P = pRT (2.28)
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Table 2.1 Numerical Values of Various Constants

23

!
Species H°(J/kg) a b

i
I
I

02 -271267.025 0.119845 947.937

H20 -13972530.24 0.43116 1857.904

H2 -4200188.095 2.0596 12867.46

OH +1772591.157 0.16564 1672.813

N2 -309483.98 0.10354 1048.389



Chapter 3

RADIATION TRANSPORT MODELS

In order to include the effects of radiative interaction in a

physical problem, it is essential to accurately model the absorption-

emission characteristics of participating species and provide a correct

formulation of the radiative transfer processes. These are discussed

briefly in this section.

3.1 Radiation Absorption Models

_lany models are available in the literature to represent the

absorption-emission characteristics of molecular species; a review of

important models is available in [41]. Perhaps the simplest model is

the gray gas model where the absorption coefficient is assumed to be

independent of the wavelength, rlany nongray models are also available

in the literature. Both gray and nongray absorption models are

discussed here briefly.

3.1.1 Gray Gas Models

In the gray model, it is assumed that the absorption coefficient is

independent of the wavelength. This is rarely a physically realistic

approximation, but it serves as an initial step for studying the effect

of radiative heat transfer. The absorption coefficient for the gray gas

is evaluated by employing the Planck mean absorption coefficient defined

as

24
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O0

f _ (T) d_
eb_

0
: (3 I)

p e (T)
b

By assuming that within a band the Planck function does not vary

significantly with the wave number, and by evaluating its value at the

band center, the relation for _p for a single-band gas can be written as

eb_c(T)

_p- , , f _ d_ (3.2)
o T4_y; A_

where _c represents the band center. For a multiband gaseous system of

n gases, _p is given by

n eb_ k (T)

W:p : }: [ _4, ,r _ dm] (3.3)

where _k represents the band center of the kth band of a particular

species. For a specific band of a given gas, the integrated band

intensity Sk is defined as

I
S =_ _ _ d_ (3.4)
K m

J am

Substituting Eq. (3.4) into Eq. (3.3), Kp is expressed as

P. n

_p - J _ (T) Sk (T) (3.5)
T4'(y) k=l eb_k

where

3
C1 mk

ebm k (T) - exp [C2 mk/T]-I
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In Eq. (3.5), Pj is species partial pressure, and CI and C2 are

constants [6]. Note that _p is a function of temperature and species

partial pressure.

3.1.2 Nongray Gas _1odels

Important nongray models available in the literature are as

follows:

1. Line Models:

(a) Lorentz

(b) Doppler

(c) Lorentz,Doppler (Voigt) /

2. Narrow Band llodels:

(a) Elsasser

(b) Statistical

(c) Random-Elsasser

(d) Quasi-Random

3. Wide Band Models

(a) Box or Coffin

(b) _lodified box

(c) Exponential

(d) Axial

The relative importance and range of applicability of these models are

discussed in Ref. 41. In the moderate temperature range (500-5000K),

use of the wide band models and correlations provide sufficient

accuracies. These models render significant computational efficiency

over the line by line or narrow band models.

The expression for the total band absorptance is given as

r

-f _ (_)d_
A(y) : / [1-e o ]dv

Av

(3.6a)
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Differentiation of Eq. (3.6a) gives

r

-f _v({) d{
0

A'(r) :f _ e
Au

I A"(r) : f

AV

I

r

"f _v ({) d{
2 0

e

dv (3.6b)

d_ (3.6c)
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These relations are used to obtain expressions for the total radiative

flux.

The radiative flux term usually involves multiple integrals even

for the simple geometries. As a result, numerical calculations for

energy transfer becomes very time consuming. Therefore, it is desirable

to replace the relation for the total band absorptance as given by Eq.

(3.6a) with a continuous correlation [8, 9, 42]. Several correlations

are available in the literature for the wide band absorptance. The

first correlation to satisfy the linear, square-root and logrithmic

limits of the wide band absorptance was proposed by Edward and _enard

[43]. The most widely used correlation is the Tien and Lowder

continuous correlation, and this is given by [42]

u+2

: _n [uf(B) (u+2f(B) ] + I.] (3.7)

f(B) : 2.94 [l-exp(-2.6B)]

B:B2p
e

The form of f(B) was chosen to give agreement with the correlation of

Edward and Menardo. The Tien and Lowder correlation is employed in this

study for the nongray gas formulation.
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3.2 Radiative Flux Equations

The equations of radiative transport are expressed generally in

integro-differential form; the integration involves both the frequency

spectrum and physical coordinates. To overcome the complexity of the

radiative transport equations, a tangent slab approximation was employed

in [44, 45]. This approximation treats the gas layer as a one-

dimensional slab in evaluation of the radiative flux. The multi-

dimensional equations of radiative heat transfer are formulated for an

arbitrary geometry, and then an approximate method is used to present

the formulation for gray and nongray gases.

3.2.1 Basic Formulation

The radiative transport equations in the present study are obtained

only for an absorbing-emitting medium contained within solid walls of

arbitrary configuration as shown in Fig. 3.1. The general formulation

of radiative transfer for the gas under the condition of local thermo-

dynamic equilibrium is given by [12].

rw r i

Iv(P) = Iv(Pw) e o + [ w p, p, o ,_v( ) Ibv( ) e dr

o (3.8)

The first term on the right hand side represents the contribution from

the wall to the intensity at P, and the second term, the contribution

from the intervening gases between P and Pw" The origin of the

coordinate system in Eq. (3.8) is chosen at the point P.

28
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The radiative flux at the point P in the direction of _ is

qR : f I _ dv dR (3.9)
O v

Substituting Eq. (3.8) into Eq. (3.9), the radiative flux is expressed

as

rw

. -f %(_) d{
_R : f f Iv(P w) e o _ dv dR

4_ o

r !

® r w -f %({) de
0

+ I I I ((P') (P') e
4_ o o v Ibv

dr' dv dR (3.1o)

The divergence of the radiative flux is formulated as

V • _R : 14x Io _ " V Iv dv dR (3.11a)

A beam of intensity I (r, n) traveling in the _ direction satisfies the
v

equation of radiative transfer

• V I : Yv I + _ I - B I (3.11b)v v v by v v

where Yv is the scattering coefficients and Bv = Yv + _v

as the extinction coefficient. For negligible scattering

(3.11b) reduces to

is referred to

(Yv : 0), Eq.

÷

• V Iv : (v (Ibv - Iv) (3.11c)

3O
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By combining Eqs. (3.11a) and (3.11c), one obtains

V • _R : f f % (Ibv - I v) dv dR
47 o

(3.11d)

Now substituting Eq. (3.8) into Eq. (3.11b), the divergence of the

radiative flux is expressed as

v • qR : 47 f ((P) I (P) dv - fv bv
o 4_

_ r w

- f f J" _: (P)mu (P') I
4_ o o v

rw

® -f
0

f <v (p) Iv (Pw) e
0

r'

-f % (¢) d_
0

bv (P') e dr' dv dR

(3.12)

Equations (3.10) and (3.12) are used to obtain various approximate forms

for the radiative flux and its divergence.

3.2.2 Gray Formulation

In the previous section, it was observed that the radiative flux

terms are represented by an integro-differential equation. Solving

these equations is extremely time consuming because of the complexity of

integration over space and frequency. Therefore, a pesudo-gray model is

selected for efficient parametric studies. To express the radiative

flux for a gray medium, one may assume that < is independent of the
V

frequency. This is rarely a physically realistic approximation; but it

serves as an initial stepping stone towards nongray analyses.

Therefore, Eqs. (3.10) and (3.12) for a gray medium are written as

rw r'
-f K(5) de -J' _(5) de

r w

qR : f I(Pw) e o dR + i f _(P') Ib(P')e o
4_ _ o

dr' dR

(3.13)
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and

" qR : 4_ ((P) Ib(P) - f K(P) I(P w) e
4x

r w
-f _({) d_

o
d_

r !

r -f _({) d{
- f f w _(p) _(p,) Ib(P, ) e o dr' d_

4_ o (3.14)

To solve the radiative flux terms for the gray medium, one can transform

the above equations into the Cartesian coordinates and then apply any of

the standard integration techniques to evaluate the radiative flux

terms. It is a lot more convenient and efficient to convert the

equations to a set of ordinary differential equations (ODE). For the

present case, differentiating Eq. (3.14) by using the Leibnitz rule

results in
r w

-f
@eb o

v2 qR : 4_(P) @--_- + _ K2(P) l(Pw) e

_({) d_
d_

32

r I

rw -f _({)d{
+ f f W(p) _(p,) ib(P, ) e o dr' dg

4x o (3.15)

A substitution of Eq. (3.15) into Eq. (3.13) gives a second order

nonhomogenious ordinary differential equation as

d2qR de b

. 2(p) qR : 4_(P)
(3.16)

It should be pointed out that if the tangent slab approximation is

employed, then the method of exponential kernal approximation is used to

convert the equations to a set of ODE's. The result is of the same form

as Eq. (3.16) but the coefficients are different, i.e.,
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Equations

employment

approach.

de b
d2 qR _ g 2(p) qR : 3 _(P) _ (3.17)

dr 2 4 _

(3.16) and (3.17) differ in the coefficients due to the

of the exponential kernal approximation in the second

These equations require two boundary conditions. For

nonblack diffuse surfaces, the boundary conditions corresponding to Eq.

(3.17) are given as

_ I dqR<_ ½)_PqR(r> I _-I : 0
e I r:O r:O

(3.18a)

(1- 1)KP qR (r) I + 1 dqR
_2 r=L "3 d-_'-Ir=L

: 0 (3.18b)

Detailed derivation of Eqs. (3.17) and (3.18) are given in [44].

3.2.3 _!onQray Formulation

For simplicity in notation, it is assumed that the molecular gas

has only one band. The following analysis is also applicable to the gas

having more than one band. Since the Planck function within a wide band

can usually be approximated by its value at the band center, Eqs. (3.10)

and (3.12) can be written as

rw

-f _v(_)d_
÷ :
qr f f Iv(P w) [e o

4_ av

rw

+ f f Ibvc(P') _ dr'dR f
4_ o av

r e

-f %(_) d_
(P') e o dv (3.19)
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and

-.D.

V • qR : 4x Ibve(P)( I _ dr) -v
Av

rw
+ f f [Ib,,c(P') I dr d_f

4_ _v

r

_f w ({) d{
w:V

r'

((P') e o dr]dr'dR (3.20)
v

Substituting Eqs. (3.6a-3.6c) into Eqs. (3.19) and (3.20), rearranging,

one gets

aR: i_ I(Pw)_ d_ - i_ I_c(Pw)_(rw) _ d_

r w

+ f f Ibvc (P') A'(r') _ dr'd_ (3.21)
4_ o

v._ R : 4_ Ibvc(P)A'(O) -

r

_ Ivc(Pw)A'(rw)dR + i fowlbVc(P')A''(r')dr'd_
(3.22)

The first term on the right hand side of Eq. (3.21) represents the

radiative flux in the absence of participating medium; the second term

gives the portion of the wall radiation which is absorbed by the gas,

and the last term indicates the emission from the gas which arrives at

point p. Since Ib and A' are independent of _, the first term in Eq.

(3.22) can be written as

4_ Ibvc(P)A'(O) : f
4_

Ibvc (P)A'(O)dR

: f Ibvc(P)A'(rw)d_ + f Ibvc(P)[A'(O)-A'(rw)]dR
4_ 4_

rw

: _ Ibvc(P)A'(rw)d£ i f Ibvc(P)A"(r')dr'd£ (3.23)O
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I A substitution of Eq. (3.23) into Eq. (3.22) results in

I V • qR : i [Ibuc(P) " Iuc(Pw)] A'(rw)dI%
IT

I

I

I

I

I

rw , i i i

_ j" [ [Ibvc(p ) - Ibvc(P )]A' (r)dr dn (3.24)
4_ o

The first term on the right hand side of Eq. (3.24) represents the net

exchange of radiation between the gas element at P and the walls; the

second term represents the net exchange between the gas element of P and

the other gas elements.

For a nongray planer system with two parallel walls at different

temperatures (Fig. 3.2), Eqs. (3.21) and (3.24) reduce to

I = _ _ [Y ' ,

_r el e2 [[,r[ euc (x', z')A(rl ) dx d_"3 dz

I - - o I _ rI

® ® L

I + [_® [_® [y ex_c2 (x', z')A(r 2) dX'iTd_/irdz'

I

I
and

+ [ [ f evc (x', Y' ', z ) dx' dy' dz' (3.25)

-= -= o _rI

I

I
V._R : [A'(rl) + A'(r2)] evc (x, y, z)

I - [_® [_= eucl (x' , z') A'(r 1) -_rldX ' dz'

I

I

I
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oo oo

- f_® -®f e c2(X', z') A'(r2) _r_ dx dz

-f f L A"(r_)[e c(X, y, z) - e c(X', y, z')] d_' dy' dz'
o xr' (3.26)

where

rl : [(x_x,)2 + (y)2 + (z-z') 2 ]
1/2

I/2
r 2 : [(x-x') 2 + (y-L) 2 + (z-z') 2]

r' : [(x-x') 2 + (y_y,)2 + (z.z,)2] I/2

The y coordinate is normal to the wall and x and z coordinates are in a

plane parallel to the wall. For one-dimensional radiative transfer,

Eqs. (3.25) and (3.26) reduce to

+

qR = el " e2 " eVcl
A(y) + e A(L-y)

vc 2

y L

+ I evc(y' ) A'(y-y')dy' - I
o y

e c(y' ) A'(y'-y)dy'

(3.27)

and

+

V "qR= [e c(y ) - e cl]A'(y ) + [e c(y) - e c2] A'(L-y)

Y
-f

o
[evc(y ) - euc(y')]A" (y-y')dy'

L

-f
Y

[euc(y) - euc(y) - e c (y')]A" (y'-y)dy (3.28)
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Equations (3.27) and (3.28) can be rearranged and written for a multi-

band gaseous system as (see Appendix B)

I qR(y) = eI - e2 + i_.=l{_ Flvci(Y

!

!

!

I

I

and

') A'.(y-y') dy'
1

L

- f F2vci(Y') A'. (y'-y)dy'}y i

N

v'qR(Y) = i=1_ {[Fluci(Y) + F2vci(Y)] avil

Y

+ _o F1vci (y') A_' (y-y') dy'

(3.29)

L

+ Io F2uci (y') A_' (y'-y) dy' (3.30)

where

and

FI_c(Y) : e c(Y) - e
vc I

F2uc(Y) : e c(y) - e
_c 2

The equations resulting from employing the tangent slab

approximation and exponential kernal approximation for evaluating the

exponetial function are of the same general form as Eqs. (3.29) and

(3.30). These equations are derived in detail in Ref. 9 and are

expressed here as
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qR(y) = eI - e2 + _ {IY
0
F1ci(Y)A} [_(y-z)]dy

and

L

-/
Y

(y') A' [-_ (y'-y)]d
F2,,,ci i

n

: (y) + F2mci(Y)] fV'qR(Y) -_ i_:1 {[Flmc i
a_i '"i

n y ,,
+ iz=1 {fo Flmci (y') Ai [ (y-y')]dy'

'} (3.31)

d _i}

L

+f
Y

F2mci '' _ ' ,(y') Ai [ (y-y)]dy } (3.32)

Equations (3.29-3.32) are in proper form for obtaining the nongray

solutions of molecular species. However, in order to be able to use the

band model correlations, these equations must be transformed in terms of

the correlation quantities. For the temperature range considered, the

radiative process is in the optically thin limit [39]. As a result,

there is no significant difference between the two approaches. It

should be noted here that for nongray gases, the divergence of radiative

flux is used as a source term in the energy equation. This is more

convenient and also avoids scheme dependency in the computation. The

correlation quantities and details of transformations are given in Ref.

20. After the transformation, Eq. (3.32) is written as
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dqR{u)"" 9 n u.1
_ A {I

du 4 i:l o.1 0

Flm (u') A" 3i [_(u.- u'.)]du'.• 1 1 1
1

U
C.

+ f I (U') A" 3 du IF2m i [_ (u' - u )] }• i i
U. 1
1

n

+_ _ A
i:l °i [Fl_i(u) + F2"'i(u)] (3.33)

Note that A"(u) expresses the second derivative of A(u) with respect

to u and

dqR dqR du

dy du dy

dq R
- [PS(T)/Ao]

U : U'=__._
By defining-_o _ and-_o , Eq. (3.33)is expressed as

dq R (y)/dy : 9/4
n 2 /L 2 Y
Z Aoi Uo. {fi=l l o

Flmi(Y') A i [_ u°i'' --[- (y-y')] dy

L

+f
Y

F2mi(y') Ai [3 Uoi'' -I-- (Y"Y)] dy'}

+ _ n AoiUo i
_ ---L---- [FI_i(Y') F2_i(Y')] (3,34)i:l

It is often desirable and convenient to express the proceeding

equation in terms of A' rather than A", This is accomplished by

integrating Eq, (3,34) by parts, The detail of the integration by parts

is given in Refo 9 and the result is given by
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dqR 3 n
- E

dy 2
i:l

A u
O. O.
1 1

L

U
m °

Y dec_i(Y ) _, [3 °l
{F dy' 1 2 L (y-y')]dy'

0

i U

l
L de,,i(y ) At [3 o.

"/ dy' 1 2 L
Y

(y'-y)]dy'} (3.35)

Equation (3.35) and the Tien and Lowder correlation given by Eq. (3.7)

can be used to evaluate the radiative flux.

3.2.4 Optically Thin Formulation

In the optically thin limit, the fluid does not absorb any of its

own emitted radiation; however, it does absorb radiation emitted from

the boundaries [6-9]. In general,

absorbing-emitting system is defined as

If it is assumed that
m

(3.36) is expressed as

the optical thickness of an

L

: dy (3.36)TO_ / _m
0

is independent of the temperature, then Eq.

TOm <m L (3.37)

A radiating system is considered to be in the optically thin limit when

Tow < < I.

In the optically thin limit, the expressions for the radiative flux

and its divergence can be obtained from the general expressions by

following the procedure outlined in [6]. For the gray gas approximation

and black-bounding surfaces, Eq. (3.14) is expressed for one-dimensional

optically thin radiation as

4O
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dq R

: 2 _ [2 eb (y) - ebl eb 2]
(3.38)

For the pseudo-gray gas model,

(3.1) - (3.5).

is replaced by (p through use of Eqs.

For the case of nongray gas formulation, A(u) : u and A'(u) : I in

the optically thin limit [6, 7]. Consequently, Eq. (3.35) reduces in

this limit to

dqR 3 n Aoi u

dy - _ S - Li:l

o i

[2 e i(Y) - elm i - e2mi] (3.39)

It should be pointed out that it is considerably more efficient to

solve numerically the system of governing equations for the case of

optically thin radiation than for the general case. In a preliminary

study, the optical thickness of the present physical problem were

calculated. It was found that the optical thickness varied between

0.003 to 0.4 in the temperature range of 1,000 to 5,000 K and pressure

between one to three atmospheres.



I
I

I

I
I

I
I

I
I

I
I

I
I

I

I
I

I

I

i

Chapter 4

TIETHOD OF SOLUTION

The grid generation technique and solution procedures for the

governing equations using the unsplit tlacCormack [46] technique and

modified Runge-Kutta time stepping scheme of Jameson [32] are briefly

discussed in this section.

4.1 Grid Generation

Grids are generated using an algebraic grid generation technique

developed by Smith and Weigel [47]. From the computational point of

view, it is desirable to have a uniform rectangular grid enclosed in a

cube, where the exterior of the cube represents the physical boundaries.

To have such grids, the body-fitted coordinate system is transformed

linearly from the physical domain (x, y) to the computational domain

(_, n) as follows:

X1 -- X ({,0) Lower

Yl -- Y ({'0) Boundary

(4.1a)

X2 : X ({,1) Upper

Y2 = Y ({,I) Boundary

X = X (_,I) n + X (_,0) (l-n)

y : Y ({,I) n + Y (_,0) (l-n)

(4.1b)

Between the (4.1c)
Boundaries
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where

0<{<1 ;O<n<l

The grid should be concentrated in the regions of high gradients to

accurately predict the solution. Therefore, more grid points are

required near the solid boundaries. The concentration of the grid

in the n-direction can be accomplished by

(By+l) - (By-I) exp[-C(n-l+_)/(l-_)]
.... (2_+i) {l+exp[iC(n-l+_)/(l-_)]} '" (4.2)

where
B+I

c : An(By-_T-)

If _ is equal to zero (_=0), the compression takes place only near the

lower wall (n=O), and if _ is set equal to one half (:=I/2), the

compression takes place near both walls. The term By has a value

between one and two, and as it gets closer to one, the grid becomes more

concentrated near the walls. Employing this concentration, Eq. (4.1e)

is written in terms of n as

X : X ({,1)_ + X ({,0) (1-_)

y : Y ({,I) n + V ({,0) (l-n) (4.3)

where

0<_<I

It should be noticed that the grid is concentrated in the normal

direction to capture the boundary layer and kept uniform in the flow

direction.
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4.2 Solution of the Govening Equations

4.2.1 Modified MacCormack's Finite-Difference Scheme

The governing equations, Eqs. (2.1), are

computational domain as

where

^

__u+___+___+_ : o
@t 2{ @n

0 = UJ

expressed in the

(4.4)

: Fy n - Gxn

: Gx{ - Fy_

H= HJ

J : x{ Yn " Y5 Xn

Equation (4.4) is discretized temporally and written as

_ F@_R @_n an+l
0n+l : 0n At "T_- + _@n + ]

The source term _n+l must next be linearized.

Taylor series in time to give

BH )2
_n+l : an + at-_ + 0 (At

(4.5)

It is expanded in a

(4.6)

or

an+l an At @H On+l . On
: + -- ( At ) (4.7)

@U

A substitution of Eq. (4.7) into Eq. (4.5) gives the temporally discrete

equation in delta form as

I
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[I + At 4] aon+l :-a t [_F + @___G+ _]n
@U an

(4,8)

aon+1 a___His the Jacobian matrix of H
where On+l - On is expressed as aU

and I is the identity matrix. The components of the Jacobian matrix are

given in Appendix C.

Once the temporal discretization used to construct Eq. (4.8) has

been performed, the resulting system is spatially differenced using the

unsplit rlacCormack predictor-corrector scheme. This results in a

spatially and temporally discrete, simultaneous system of equations at

each grid point. Each simultaneous system is solved using the

Householder technique [48, 49] in combination with the I1acCormack

technique, which is then used to advance the equations in time. The

modified l_acCormack scheme then becomes

[I + At (4) n cn-TT [BF @G + _]n
BU ij] auij : -At ,_ + @---_ ij

(4.9a)

6n'n-+T on 0n-n_..1
ij = ij + A Ij

(4.9b)

@_._)n cn+1 @F @G _,n-TT
[I + At ( ] auij : - at [_ +--+

BU ij an _J ij

(4.10a)

on+l ^n , _n+l on'_._ (4.10b)
lj = Uij + 0.5 [auij + a ij J

Equations (4.9) and (4.10) are used to advance the solution from

time n to n+l, and iteration process is continued until a desired

integration time has been reached.

!
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4.2.2 Modified Run_e-Kutta Finite-Volume Technigue

In 1981, Jameson, Schmidt and Turkel [33] proposed an explicit

finite volume technique using Runge-Kutta time stepping _cheme for the

solution of unsteady Euler equations. The scheme is a modified version

of the classical four stage Runge-Kutta technique. The method is

fourth-order accurate in time for linear equations and second-order

accurate for nonlinear equations. The scheme is second-order accurate

in space for both linear and nonlinear problems, provided the grid is

sufficiently smooth. This scheme was extended by Swanson and Turkel

[35] to solve the thin layer Navier-Stokes equations for transonic flow

over the airfoil. In the present work, this scheme is being extended to

solve supersonic chemically reacting and radiating viscous flows. The

governing equation, Eq. (2.9), in integral form for a region R with

boundary _ is rewritten here for the convenience as

@-'- II u dxdy + _ (F dy - G dx) + II H dxdy : 0 (4.11)
_t n @n n

The discretization procedure follows the method of lines in decoupling

the approximation of the spatial and temporal terms. The computational

domain is divided into quadrilateral cells (Fig. 4.1), and Eq. (4.11) is

applied to each cell separately to obtain a system of ordinary

differential equations. The resulting equations are solved by the

finite volume scheme of Jameson.

Applying Eq. (4.11) to an arbitrary cell, ABCD, and approximating

the integrals by the midpoint rule, one obtains

d
_- (Aij Uij) + L Uij + Aij Hij = 0 (4.12)

I
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Equation (4.12), with the inclusion of artificial viscosity, is written

as

d

d-t-(Aij Uij) + L Uij - D Uij + Aij Hij : 0
(4.13)

where L is the spatial discretization operator, and

L Uij = FLXAB + FLXBc + FLXcD + FLXDA (4.14)

The components of Uij are now cell averaged quantities; Aij is the cell

area of ABCD. The vector FLX represents the fluxes through the cell

sides. For example, FLXAB is written as follows

FLXAB : FAB AYAB - GAB AXAB (4.15)

where FAB and GAB are viscous and inviscid fluxes through the side AB

and

AYAB : YB " YA; AXAB : XB " XA

Inviscid fluxes are evaluated from two adjacent cells as

(FAB)in v = (Fij + Fij_l)inv/2 (4.16)

To evaluate the viscous fluxes on the cell sides, one must evaluate ux

and Uy. These components are evaluated from Green's theorem as follows:

(Ux)AB = (Ux)i,j.i/2
1 ffu dxdy = 1 _ u dy (4.17a)

Ai,j-1/2 _l x _i,j-1/2 @R

(Uy)AB : (Uy)i,j_I/2 I _f Uy dxdy = - I _ u dx= Ai,j-1/2 Ai,j-1/2 B_
(4.17b)
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In discrete form, ux for the cell side AB in Fig. 4.1 is written as

1 (uE AyE + UBay B + uFAY F + uA AYA) (4.17c)
(Ux)AB = Ai,j_i/2

49

Velocities at the cell corners are evaluated from the four adjacent

cells, and Ai,j_l/2 is evaluated as

1

Ai,j_l/2 = _ (Ai,j

4.2.2.1

+ Ai ,j-I )

Boundary Conditions - So far, only the interior cells have

been considered. The implementations of the boundary cells are consider

in this section. These include supersonic inflow and outflow, and slip

and nonslip wall boundary conditions. To determine the inflow

quantities, the flux vectorswill be evaluated based on the free stream

conditions. For outflow conditions, the quantities are extrapolated

from the interior points. For the inviscid flow at the solid wall, a

zero wall flux condition is implied, that is

AS : 0 (4.18)
n

where Vn is the normal wall velocity and AS is the wall cell surface

area (Fig. 4.2a). Equation (4.18) is written in Cartesian coordinates

as

V AS : u ay - v ax
n

Thus for inviscid flows, the net fluxes through face 2 (Fig. 4.2a) are

f(F dy - G dx) : 0 Continuity Eq.

f(F dy - G dx) : (P a y) X-mom. Eq.

!
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f(F dy- G dx) : (-PAx) Y-mom. Eq.

/(F dy - G dx) = 0 Energy Eq. (4.19)

Pressure at the wall is evaluated by

= aP ay + 0 (ay)2
Pw Pi,1 - a'_

The pressure gradient is calculated using the three point differencing

method. For viscous flow, pressure gradient is set to zero (boundary

layer assumptions).

Finally, the no slip boundary conditions for viscous flows must be

considered. The wall fluxes are divided into inviscid and viscous

parts; the inviscid parts are evaluated from Eqs. (4.19). For viscous

flow, the velocity component tangent to the wall must be zero. As the

result of this constraint, the viscous flux vector is nonzero. For

" _ be computed on face 1 in Fig. 4.2b asexample,
By no By.an

au UA AXA + UB AXB + Uc AXc
- (4.20a)

By AABCD

BT _

ay AABCD

TA AXA + TB AXB + Tc AXc + TD AXD

TD = 0.5 (Ti,1 + Ti+l,1)
for an adiabatic wall

For face 4, the gradient of T and u are evaluated from the ghost cell

CDEF.
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@___T: TC aXc + TF AXF + TE AXE + TD AXD

ay Ai ,1
(4.20b)

TD = TF = TE = Ti, I
for an adiabatic wall

TD : TF : Tw for constant wall temperature

TE = Ti,1 + 2 (Tw - Ti,1 )

Bu UE AXE + Uc aXc

- ; uE = _ uC
ay Ai, 1

Note that AX is direction dependent (AXC = - AXE).

4.2.2.2 Artificial Viscosit_ - The finite volume scheme (Eq.

(4.12)), unlike the MacCormack scheme, is not inherently dissipative

and, therefore, it does allow undamped oscillations with an alternate

sign at odd and even grid points. To prevent large oscillations caused

by a discontinuity, some kind of artificial damping must be added to the

scheme. The original damping proposed by Jameson et al. [33] is a blend

of second- and fourth-order differencing. The basic idea is to add the

fourth-order dissipative terms throughout the domain to provide a base

level of dissipation sufficient to prevent nonlinear instability, but

not enough to prevent oscillations in the neighorhood of shock waves.

For the linear problem with central differencing schemes, the

neighboring points decouple. This odd-even decoupling prevents the

possibility of driving the residual to machine zero. For the nonlinear

equation, the values are evaluated at the cell sides before evaluating

the fluxes. This nonlinearity couples all the neighboring points

together. However, this coupling is weak and convergence to a steady

state can be slow [33]. In order to capture the shock waves, additional
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second-order dissipative terms are added locally by a sensor designated

to detect the shock waves. In recent years, Jameson has modified the

original damping to lead to a scheme which will behave locally Jike a

TVD scheme [50, 51]. Both dampings were tested in this study by solving

the two-dimensional Euler equations. The TVD damping prevented the pre-

and post-shock oscillations which were observed when the original

damping was used. The results of the two dampings are compared in the

next chapter. The original dissipation and the TVD dissipation schemes

modifications are outlined here. To preserve the conservation form, the

dissipative terms are generated by dissipative fluxes. The damping term

in Eq. (4.13) is calculated from

Di, j (U) = di+l/2,j - di.i/2, j + di,j+I/2 - di,j.i/2
(4.21)

where the dissipative flux di+1/2, j is defined by

i+I/2,j
(2) Ri _ Ui )= _i+1/2,j +1/2,j (Ui+l,j ,j

¢(4) Ri (" i+1/2,j +I/2,j Ui+2,j - 3 Ui+1, j + 3 Ui,i_ - Ui_l, j)

(4.22)

2) is an m(4)Here, ¢'+1/2 i+1/2,j are adaptive coefficients and Ri+1/2, j is a

coefficient chosen to give the dissipative terms the proper scale. An

appropriate scale is [50]

A.

I IAi+l,j + a__) (4.23)
Ri+l/2,j ='2 _Ati+ 1,j i,j

An effective sensor of the presence of a shock wave can be constructed

by taking the second difference of the pressure. Define

Pi+1,j " 2Pi,j + Pi-l,j I
--" . ÷ F .....

_ij Pi+1,j + 2Pi,j i-l,j I (4.24)
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and set

_i+1/2,j = max(_i+2,j' ')i+l,j' vi,j' "°i-l,J)

2) and _ in the original form were written
The coefficients _.+1/2,j i+1/2,j

as

12) = K(2) " (4.25a)c'+1/2,j Vi+l/2,j

and

(4) = max[O. (K(4) (2) )] (4.25b)
¢i+1/2,j ' - ei+l/2,j

where

K(2) = p.25 and K(4) = 1/256

(4)
The modified coefficients c(2) and ¢ that have approximately the TVD

property are written as

(2) = min (½, K(2) T_i+I/2,j) (4.26a)ei+l/2,j

and

(4) = max(O. K(4) " ) (4.26b)
ci+I/2, j ' - _ vi+i/2, j

where

K(2) = 1, K(4) = 1/64, and _ = 2

In a smooth region, c(2) is proportional to the square of the mesh width

and ¢(4) is of order one, therefore, di+1/2, j in Eq. (4.22) is of order

three. In the shock region, e(4) is zero, and, therefore, the fourth-

order damping is cut off to prevent oscillation, and _(2) is of order

one, so that the scheme behaves locally like a first-order scheme.

However, this does not effect the global second order accuracy of the

finite volume scheme [35].

!
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4.2.2.3 Time-Stepping Scheme - Equation (4.13) is discretized

temporally and written as

Un+1 unjl
Aij (.ij- "" + L U - O UAt ij ij

Hn+l
+ Aij ij = 0 (4.27)

Substituting Eq. (4.7) for the source term, Eq. (4.27) is written in

delta form as

raH_n Aun+l At Un. - D Un. + Hn
[I + At L@-l]-)] = "X'7"7..[L Ij Ij Aij ij]

1j

(4.28)

To advance Eq. (4.28) in time, the modified four-stage R-K technique in

combination with the householder technique [46, 47] is employed. At

time level n, the scheme is written as

U(0) : U(n)

At uK-1
[I + At C_)] AUk : " :k _ [L - DO(O) + A

UK = U0 + AUK

Hn "
ij IJ ]

K : 1,4 ml = 1/4, _2 = 1/3, _3 = 1/2, _4 = 1

U(n+l) : U(4)

For efficiency purposes, the natural and artificial viscosities are

evaluated at the first stage and frozen for the remaining stages.

For time accurate solution, the computational time step, At, must

satisfy the smallest time scales of the fluid and chemistry, i.e.,

At = min (Atf, Atch). If the steady state solution is sought (as in

this study), it is possible to speed up the convergence by using a
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larger time scale due to the so-called preconditioning matrix (left hand

side bracket in Eqs. (4.8) and (4.28)), the purpose of which is to

normalize the various time scales so that they are of the sameorder

[28]. To further speed up the convergence, the solution is advanced in

time with a time step dictated by the local stability limit. In the

present work, the local At is based on the Courant-Friedrichs-Lewy (CFL)

stability limit. Local time stepping allows faster signal propagation,

and thus faster convergence.

The radiative flux term is evaluated for both gray and nongray

gaseous systems. In the nongray gas formulation, the divergence of the

radiative flux is evaluated using a central differencing scheme and is

treated as radiative source term in the energy equation. Since the

radiative flux term is in integro-differential form, unlike the other

flux terms which are only in a differential form, it is uncoupled and

treated separately. In the gray gas formulation, Eqs. (3.17) and (3.18)

are discretized by central differencing, forming a tridiagonal matrix

(see Appendix D). This tridiagonal matrix can be solved efficiently by

the Thomas algorithm. The radiative fluxes and chemistry rates are

evaluated at the first stage and frozen in the remaining stages.
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Chapter 5

RESULTS AND DISCUSSION

Based on the theory and the computational procedures described

previously, two algorithms were developed to solve the two-dimensional

Navier-Stokes equations for chemically reacting and radiating supersonic

flows. The performances of two damping schemes are compared by solving

the Euler equations for supersonic flow through a channel with a ten

degree compression-expansion ramp (Fig 5.1). Then, the Navier-Stokes

equations are solved by a finite difference and a finite volume scheme,

and results are compared with another computational method. Finally,

the extent of the radiative heat transfer in supersonic chemically

reacting flows is investigated.

For simplicity in the rest of this discussion, the original damping

is referred to as Dampl and the modified TVD version as Damp2. In the

numerical experiment with Dampl, it was found that the tangential

component of the second order dissipation (¢(2)) becomes large at the

inlet region and this causes the flow to separate near the boundary.

The excessive damping is because of the pressure jump caused by the

leading edge shock. This behavior was also observed by Turkel [34] at

the leading and trailing edges of the airfoil. He suggested multiplying

the viscosity by (M/M®) 4. Chen et al. [52] suggested multiplying

c (2) by a linear factor which is zero near the boundary and one in the

farfield. The coefficients K(2) and K(4) must be readjusted each time

56
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Fig. 5.1 Flow in a channel with compression-expansion corners.
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by changing the free stream conditions or the grid size. The above

problems make Dampingl less desirable. On the other hand, Damp2 leads

to a scheme which will behave locally like TVD scheme as long as _(2)

in Eq. (4.26a) is equal to I/2 in the neighborhood of a shock wave.

5.1 Non-Reacting Flows

The non-reacting flow equations are solved first for inviscid and

then for viscous flows. The inviscid flows are considered for comparing

the performance and accuracies of two damping schemes (Dampl and TVD

Damp) in the finite volume scheme. The results are compared with

calculated results of the inviscid flow by the finite difference scheme

of MacCormack. In the remainder of this chapter, wherever finite

difference and finite volume schemes are referred, the reference is to

the _lacCormack and Jameson schemes, respectively.

The Euler equations were solved for ideal gas flowing at M : 5,

T : 293 K, and P : 1 atm in the channel with a compression-

expansion ramp (Fig. 5.1). A 51x51 grid with uniform spacing in both

the flow and normal direction was used to solve the flow. Figures 5.2-

5.4 show the results for the temperature, pressure, and density

variations, as a function of x for three locations across the channel

(lower boundary, center of the channel and upper boundary). The results

are obtained by employing the finite volume scheme with Dampl. Similar

results are illustrated in Figs. 5.5-5.7 when Damp2 is employed in the

finite volume scheme. Comparing the results of Figs. 5.2-5.4 with the

results of Figs. 5.5-5.7, it is seen that pre- and post-shock oscilla-

tions are removed by employing Damp2. As mentioned previously,

employing Damp2, the scheme behaves locally like a TVD scheme as long as

58
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the coefficient _(2) is set equal to 1/2 in the neighborhood of a shock

wave. The temperature, pressure, and density evaluated by the finite

difference scheme are plotted at the lower wall, center of the channel,

and the upper wall in Figs. 5.8-5.10, respectively. The density at the

lower wall is slightly overpredicted in comparison to ideal gas flowing

through a ten degree shock; consequently, the temperature is slighly

underpredicted.

For the solution of the viscous flow, two test cases were selected.

The first case considered in that of a supersonic flow over a flat plate

and the second case is of a supersonic flow in a channel. The simplest

way to test the behavior of a Navier-Stokes solver is to solve for the

flow with a low Reynolds number over a flat plate. In this case, a

temperature equal to the stagnation temperature was specified at the

wall. Using the fluid properties specified in Table 5.1 and a uniform

grid distribution, variations in the temperature and the two velocity

components were calculated at the exit plane and these are plotted in

Figs. 5.11-5.13. The profiles show very good agreement with the

calulations performed by Carter [53]. The oscillation observed in Figs.

5.11 and 5.12 are due to the bow shock from the plate leading edge.

In the second case, the solutions are obtained for the supersonic

flow in the channel with a compression-expansion ramp. The free stream

properties considered are H : 5, T : 293K, and P = 0.I atm. The

corresponding freestream Reynolds number at the exit plane is about

l.lxlO 6. This is a significantly more difficult case compared to the

first case. To capture the boundary layer, the grids are compressed

near the boundaries; consequently, the grid aspect ratio becomes very

large. The non-uniformity of the grid creates significant problems

for some schemes. For example, the finite volume scheme with Dampl
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Table 5.1 Flat Plate Test Data

Properties Values Dimensions

P 7.0 N/m 2

T 216 OK

u velocity 882 m/s

v velocity 0.0 m/s

ReL I000.0

Pr 0.72

Cp I000.0 J/kg K

Cv 714.0 J/kg K

L 0.15 m

Grid 51x51
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could accurately predict the pressure profiles through the channel, but

it is not capable of predicting the temperature or velocity profiles.

It was found that the Jameson scheme with Dampl is capable of solving

the viscous flow for a Reynolds number of up to ten thousand. For flows

with Reynolds numbers on the order of a million and above, the viscous

properties could not be predicted accurately. Dampl was originally

developed for the solution of inviscid flows on a grid with an aspect

ratio of order one. For the solution of viscous flows, it is not

unusual to have a grid with an aspect ratio on the order of two to

three. This non-uniformity creates an excessive amount of damping in

the flow direction and insufficient damping in the normal direction.

Various investigators [36, 54] have suggested different techniques to

make the damping uniform in both directions. It was found that by

substituting At x and Atyinstead of At in Eq. (4.23), that the damping

became more uniform; this could also be achieved by substituting p

instead of P in Eq. (4.24). Of course, this modification requires the

readjustment of coefficients, K(2) and K(4) in Eqs. (4.25). By

employing Damp2 instead of Dampl, the scheme became nonoscillatory,

robust, and more accurate. The solution was obtained for Reynolds

numbers of one million and ten million with two different grids. The

results showed the same trend as the results of finite difference

scheme.

Figures 5.14-5.19 illustrate the pressure and temperture profiles

for 51x51 and I01x51 grids and for freestream properties of P : .I atm,

T : 293K, and M : 5. Figures 5.14 and 5.15 illustrate the pressure

profiles at the lower wall and the center of the channel, and Fig. 5.16

represents the pressure at the upper wall. The temperature profiles at

73
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these locations are plotted in Figs. 5.17-5.19. Reducing the number of

grid points in the flow direction resulted in higher temperatures and

lower pressure through the shock within the boundary layer. This is due

to the excessive amount of artificial viscosity in the streamwise

direction. For optimum results, grid must be compressed in the

streamwise direction for the high gradient regions to reduce the grid

aspect ratio.

The viscous flow properties were calculated by the finite

difference and finite volume schemes; the results are compared with the

calculations performed by Chakravarthy [55] using the Roe scheme. The

pressure profiles are illustrated in Figs. 5.20-5.22 for the same three

locations across the channel as in Figs. 5.14-5.19. The calculated

results predict a pressure jump at the inlet, which is caused by the

presence of a shock from the leading edge of the channel. Downstream of

the channel on the lower wall there is an increase in the pressure. A

close examination of the results showed that due to the interaction of

leading edge shock with the shock and expansion fans from the

compression-expansion corners, the velocity vector in that region has an

angle less than one degree with the boundaries. The interaction of the

flow with the lower wall creates a series of Mach waves which causes a

small increase in the pressure. On the upper wall in the shock boundary

layer interaction region, the pressure predicted by the finite

difference scheme shows an oscillation. The calculated results compare

very well with the Roe scheme. Figures 5.23-5.25 illustrate the

streamwise velocity for the same locations as pressure. At the

compression corner, the MacCormack scheme shows the flow to be

separated, while the other two schemes predicted the same trend but the
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flow was not quite separated. The shock interaction with the upper

boundary creates a small separation bubble. The flow is fully separated

at X/L x : 0.7; this is predicted by all three schemes. The streamwise

velocity illustrated in Figs. 5.24 and 5.25 indicate that the Jameson

scheme predicts a decrease in velocity before the shock and the

separation region. This is due to tht excessive amounts of artificial

viscosity in the neighborhood of shocks when the grid spacing is large

in streamwise direction. To reduce the excessive amount of streamwise

dissipation in the shock vicinity, the scaling factor (Ea. (4.23)) must

be reduced. This can be achieved in two ways, one by reducing the grid

cell area and the other by increasing the time step in the flow

direction. Reducing the grid cell area in the shock vicinity requires

more grid points. However, if there are enough points in the flow

direction, this can be achieved by compressing the grid in the flow

direction. For the highly stretched grid, it is recommended that R be

scaled (Eq. (4.23)), with respect to local At x for the flow direction

and local Aty in the normal direction as opposed to AtCF L which was

used in this study. Also, the results calculated using the finite

volume scheme predict a faster drop in the velocity near the leading

edge than the Roe's scheme.

Temperature profiles are shown in Figs. 5.26-5.28. Temperature is

the most sensitive and difficult property to predict accurately. In the

finite difference calculations, temperature is strongly dependent on the

implication of the boundary conditions. In this work, it is assumed

that the walls are adiabatic. This could be enforced by either

BT/@y ,[_00y or @H/@yly=O0,= (Appendix E). The above results were

R i

obtained by enforcing the zero temperature gradient. The same trends

are predicted by all three schemes. The approximate temperature
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recovery factor for compressible laminar flow with M = 5 and Pr = 0.72

is 5.25 [56]. This value is predicted by the Jameson and Roe schemes

towards the channel outlet. The above recovery factor can be predicted

with the finite difference scheme by enforcing the zero enthalpy

gradient at the boundary. Figures 5.29-5.31 illustrate the temperature

profiles when zero enthalpy gradient was enforced for the finite

difference scheme. Temperature increases very rapidly at the leading

edge due to the flow stagnating from the free stream within one grid

spacing.

5.2 Reacting and Radiating Flows

Before proceeding into the evaluation of the radiative heat

transfer, the performance of the finite volume and difference schemes is

compared for chemically reacting flows. Premixed hydrogen-air with an

equivalence ratio of unity flows through a channel (Fig. 5.32) with a

ten degree compression corner, and freestream conditions, P : I atm,

T : 900OK, M : 4. A switch is built into the code to prevent

chemical reaction for temperatures below IO00:K. The results for 02 and

H20 are plotted for two different locations across the channel in Figs.

5.33 and 5.34. Due to the high temperature in the boundary layer, the

flow is ignited before the shock, but outside the boundary layer there

is no chemical reaction in the flow before the shock wave. The finite

difference scheme shows oscillatory behavior near the shock. The

results predicted by both schemes are seen to be in a good agreement.

Radiative flux is a strong function of temperature and pressure

gradients. The temperature gradient over a grid spacing is greater in

the normal direction than the streamwise direction. Therefore, it is
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reasonable to assume that radiative heat transfer is negligable in flow

direction. However, in general, this is not the case because the global

gradient of the temperature has a significant effect on the radiative

flux. Three different geometries are employed for various parametric

studies. One is a channel with two parallel plates a distance L apart

(Fig. 3.2); the other is a channel with a ten degree compression-

expansion ramp at the lower boundary (Fig. 5.1). The third geometry is

a channel with a compression corner at the lower boundary (Fig. 5.32).

For the temperature range expected in the scramjet combustor, the

important radiating species are OH and H20. The spectral information

and correlation quantities needed for these species are obtained from

Ref. 20. Both reacting and nonreacting flows are considered. Results

for the nonreacting, one-dimensional radiative transfer are presented in

Figs. 5.35-5.38. Completed information on one-dimensional radiative

transfer with chemical reaction is provided in Ref. 43. Selected

results of the one-dimensional radiative transfer analysis are discussed

here briefly.

For the parallel plate case (3 cm xlO cm), the inflow conditions

are P : I atm, T : 170OK, H : 3.0, and fH 0 = 0.5, fo : .I and
® ® ® 2 2

fN2 = 0.4. Results for the radiative flux, as a function of the

nondimensional location along the flow, are illustrated in Fig. 5.35 for

various distances from the lower plate. It is noted that the radiation

flux is approximately zero in the center of the channel (y : 1.5 cm) and

is significantly higher towards the top and bottom of the plates. This,

however, would be expected because of the symmetry of the problem and

the relatively higher temperature near the boundaries. The variations

in the radiative flux are due to the leading edge shock interaction with

the boundaries.
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The results for radiative flux are illustrated in Figs. 5.36 and

5.37 as a function of the nondimensional y-coordinate. For P = I atm,

the results presented in Fig. 5.36 for different water vapor

concentrations indicate that the radiative interaction increases slowly

with an increase in the amount of the gas. The results for 50% H20 are

illustrated in Fig. 5.37 for two different pressures (P = I and 3 atm)

and x-locations (x = 5 and 10 cm). It is noted that the increase in

pressure has dramatic effects on the radiative interaction. The

conduction and radiation heat transfer results are compared in Fig. 5.38

for P = 3 atm and for two different x-locations (x = 5 and 10 cm). The

results demonstrate that the conduction heat transfer is restricted to

the region near the boundaries and does not change significantly from

one x-location to another. The radiative interaction, however, is seen

to be important everywhere in the channel, and this can have an

influence on the entire flowfield. The results presented in Figs. 5.36-

5.38 should be physically symmetric, but due to the predictor-corrector

procedure used in the llacCormack's scheme, they exhibit some unsymmetri-

cal behavior.

For the parallel plate geometry, a comparison of the divergence of

radiatve flux for general (nongray), gray and their optically thin limit

models is presented in Fig. 5.39 for two different y-locations (y = 0.2

and 1.5 cm). The inflow conditions are P = 1 atm, T = 1700K,

M® = 4.3. The gray gas formulation is based on the planck mean

absorption coefficient which accounts for the detailed information on

different molecular bands. As such, this approach is referred to as the

"pseudo-gray formulation." The magnitude of optical thickness

calculated for this case (0.003 < T < 0.4) shows that the radiation
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regime is in the optically thin limit. The gray, nongray, and optically

thin limit formulation are employed, and results confirm that the

radiation regime is in the optically thin limit. For the physical

conditions of the problem, no significant difference in results is

observed for the two y-locations. The solution of the gray formulation

in ODE form proves to be about ten times more efficient than the

solution of the general formulation on the vector processing computer

(the gray formulation uses 0.056 CRU's per iteration, while the general

formulation uses 0.57 CRU's per iteration). The optically thin

formulation is slightly more efficient than the gray formulation. All

other results presented in this study have been obtained by using the

pseudo gray gas formulation.

To investigate the effects of radiative energy tranfer in

chemically reacting flows, premixed hydrogen and air with an equivalence

ratio of unity was selected. Specific results are obtained for one- and

two-dimensional radiative transfer with the physical geometry of Figs.

5.1 and 5.32, respectively. For the one-dimensional radiative transfer,

the inlet conditions considered are P : I atm, T : 1700, 11 : 4.5.

For the physical conditions of the problem, the radiation participating

species produced due to the chemical reaction essentially are OH and

H20. The radiative interaction is started at about X/L x : 0.20 to make

sure that there are significant amounts of OH and H20 produced by the

reaction for active participation. This restriction was removed later

and radiative interactions start at the inlet for the remaining

results. The pressure contours for the flow without and with chemical

reaction are shown in Figs. 5.40 and 5.41. A comparison of the pressure

contours shows that the shock angle has increased in the case of the

I05
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reacting flow. This is due to a relatively thicker boundary layer and

changes in the thermophysical properties of the mixture.

The variations in species concentration along the channel are

illustrated in Fig. 5.42 for chemically reacting, and chemically and

radiating flows. It is found that due to the radiative interaction, the

concentration of OH increases by about five percent and the concentra-

tion of H20 decreases by the same amount. It should be noted that the

radiative interaction has no significant effect on 02 and H2. The

effect of radiatve heat transfer on the temperature is almost

negligible.

The effects of two-dimensional radiative transfer in chemically

reacting flows was investigated for the physical problem of Fig. 5.32.

Premixed hydrogen and air with an equivalence ratio of unity, and inlet

conditions of P : I arm, T : 900 K, M : 4.0 were selected.

Figures 5.43-5.46 are the contour plots of the reactants and products.

As expected, the destruction and production of the species occurred only

in the boundary layers and after the shock, where the temperature is

greater than I000 °K. Figures 5.47 and 5.48 are contour plots of the

pressure without and with chemical reaction. It should be observed that

the compression shock is curved when chemical reaction takes place. A

series of shock waves is created due to the pressure increase caused by

a sudden heat release from chemical reaction. Interaction of these

shock waves with compression shocks increases the shock strength, and

this causes the shock to curve.

Figure 5.49 illustrates the variation of nondimensional y-radiative

flux for several locations across the channel. The radiative flux in

I08
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the y-direction is neglegible before the shock; this is due to the

almost symmetrical condition and lower pressure and temperature. The

radiative flux substantially increases after the shock due to the

increase in participating species, pressure, and temperature. Radiative

flux decreases away from the lower boundary due to the reduction in

temperature. The radiative flux in a streamwise direction is

illustrated in Fig. 5.50. It peaks at a short distance from the

boundary and then gradually decreases toward the center of the

channel. The peak is due to the pressure gradient caused by the leading

edge bow-shock. The radiative flux (qRx) remains constant in the region

with no chemical reaction, and gradually decreases in the region with

chemical reaction. The reduction in qRx is caused by cancellation of

fluxes in positive and negative directions.

Figures 5.51 and 5.52 illustrate the radiative flux for the same

inlet conditions as in Fig. 5.32 but for the 150 compression corner.

Comparing the results of Figs. 5.49 and 5.51, it is noted that, due to

the increase of shock strength, the radiative flux in y-direction has a

steep gradient through the shock. After the shock, it gradually

decreases as some of the radiative flux from lower boundary gets

canceled from the radiative flux of the upper boundary layer. Figure

5.52 is the illustration of the streamwise flux along the channel for

several locations across the channel. Comparing the results with the

results of Fig. 5.50, it is noted that the radiative flux increases

considerably with increasing the shock angle.

Figures. 5.53 and 5.54 illustrate similar results as presented in

Figs. 5.49 and 5.50 for the same freestream conditions but for FI® = 6.

By increasing the r_ach number the shock angle decreases. As a result,
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there is no chemical reaction at y : 0.5 cm. Therefore, streamwise

radiative flux at this location reduces to zero. It is noted that the

radiative flux increases substantially by increasing the llach number.

Figure 5.55 illustrates the variations in species mass fraction for

two locations (y : 0.02 and 0.2 cm) across the channel. At y : 0.02 cm,

where the value of total energy is reduced by the qRx (qRx direction is

from outlet to inlet), less H20 is produced. After the shock, more H20

has been produced, for both locations because the total energy is

increased by qRy" It should also be noted that at locations where the

total energy is reduced less of the reactant (02) is used (Fig. 5.56).

The temperature variation for chemically reacting, and reacting and

radiating flows along the channel are illustrated for two locations (y :

0.02 and 0.2 cm) in Fig. 5.57. At location y : 0.02, where the value of

qRx is greatest in comparison to the other locations, the temperature

has been reduced. At y : 0.2, there is no change in the temperature

before the shock because there are no paticipating species. After the

shock, temperature has slightly increased over the nonradiating case;

this is due to the contribution from qRy"
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Chapter 6

CONCLUSIONS

Based on the theory and computational procedure that have been

described, two algorithms were developed to solve the continuity,

momentum, energy, and species continuity equations for nonreacting,

reacting, radiating and reacting supersonic channel flows. The finite

volume algorithm with the appropriate damping scheme proved to be

accurate, non-oscillatory and robust for reacting and nonreacting,

viscous and invsicid flows. The supersonic viscous and inviscid flows

in a channel with ten degree compression-expansion ramps at the lower

wall were solved by both the finite-volume and finite-difference

schemes. The results of viscous flow were compared with the results of

the upwind scheme of Roe. The finite-volume scheme required more grid

points in the boundary layer and shocks than did the finite difference

scheme. There is an excessive amount of artificial viscosity due to the

highly stretched grid in the boundary layer, near high gradient regions

(like compression or expansion corners). However, this problem can be

alleviated by increasing the grid points in the high gradient regions in

the flow directions.

The supersonic pre-mixed hydrogen-air flow with equivalence ratio

of unity was solved by both finite difference and finite volume schemes

in a channel with a ten degree compression corner. The flow was ignited

by the shock wave from the compression corner, The results of finite
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volume scheme compared very well with the results of the finite

difference scheme. Finite volume scheme did not show the oscillation

which was observed in the finite difference solution.

In the hypersonic propulsion system, the temperature ranges from

one to five thousand degrees Kelvin. In this range, various nonsym-

metric molecules becomehighly radiative participating. One-dimensional

radiative flux was included in the energy equation for the solution of

nonreacting supersonic flows between parallel plates. It was concluded

that the radiative flux increases with the increase of pressure,

temperature, and participating species. In the case of flow without

chemical reaction, most of the energy transferred was by convection in

the direction of flow. As a result, the radiative interaction did not

affect the flow field significantly.

Finally, two-dimensional radiative interaction was investigated for

supersonic chemically reacting flow in a channel with a compression

corner. Some important results were obtained by considering the

radiative flux in both directions. The results revealed that radiation

can have a significant influence on the entire flow field; however, the

influence is stronger in the boundary layers. It was found that due to

the temperature increase by chemical reaction, radiatve transfer in the

streamwise direction can have a significant effect on the flow field.

Radiative heat transfer is a strong function of the pressure

pathlength. By increasing the dimensions from the model geometry to

physical geometry, pathlength and, therefore, radiative heat transfer

will increase. It is concluded that radiative heat transfer in the

hypersonic propulsion can have a significant effect on the entire flow

field. It was also found that the numerical schemebased on the pseudo-
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gray gas formulation for the radiative flux is highly efficient as

compared to the scheme based on the nongray formulation, especially for

the vector processing computers (over ten times), It is concluded that

for the supersonic chemically reacting flows the radiation is in

optically thin limit for the physical conditions considered in this

study.

It is suggested that future study include grid adaption to the

finite volume scheme for better shock resolution. For steady state

solution, it is suggested that the multi grid and residual smoothing be

used to speed up the convergence. The effect of radiative heat transfer

in non-premixed chemically reacting flow should also be investigated.
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APPENDIX A

DERIVATION OF CONDUCTION HEAT FLUX TER_IS

To simplify Eqs. (2.3) to Eqs. (2.4), the Lewis number is assumed

to be unity. This simplification is carried out in detail for Eq.

(2.3b) and the same is applied to Eq. (2.3a). Using the expressions for

the thermal diffusivity (_) and Lewis number (Le) , Eq. (2.3b) can be

expressed as

= K/pCp

L = _/D
e

m @f
1

qcy = - pD (k E aT + Z _ h.) (A.1)
e P @Y i=1 @Y I

Defining the binary diffusion coefficient D in terms of the Prandtl and

Lewis number Eq. (A.1) can be expressed as

Pr = v/:

= _ = vlPr _ u

D _ _ -PTLe

m afi

qcy : " "_r [_p @--T-T+ _ _T hi] (A.2)
ay i:l

where

m

Cp: S f. Ci=l i Pi

I
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The static enthalpy of the mixture is given by the relation

m T

h : _ [h° + I Cp dn] fi (A.3)
i:l o i

It should be noted that n is a dummy variable employed to evaluate the

sensible enthalpy. Using the Leibnitz formula, Eq. (A.3) is

differentiated to obtain

@h m T @f i ah °
: S [ (hO + I C (n) dn) -- +

@y i :I i o Pi ay fi

T aCpi (n)

+ fi f ay dn + fi (T) aTo Cpi -_] (a.4)

The coefficients of the first differential on the right hand side is

equal to h i and the second and third terms are identical to zero,

therefore, Eq. (A.4) reduces to

ah m af i
-- = _ [hi + fi aT
@y i:l aT c pi "_]

or

@h m af.
__: s h.____1 + C aT (A.5)
ay i=l i @y p ay

Substituting Eq. (A.5) into Eq. (A.2), qcy is expressed as

u @h
qcy : - _-_Ty

or

qcy : " _ aya'-ee
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I APPENDIX B

I
I

RADIATIVE FLUX EQUATIONS FOR NONGRAY GASES

In this appendix, Eqs. (3.27) and (3.28) are rearranged and written

as they are expressed in [12]. The first integral in Eq. (3.27) can be

written as

I

I

I

I

Y Y

S evc(Y')A'(y-y')dY' : S [evc(Y') - evcl ] A'(y-y')dy'o o

Y

+ evc I f A'(y-y') dy'o

Y

_I__ >i_oIo [evc(y') - eVcl]A'(y-y )dy' - evc I

I
I

I

Y
=S

o
' A(O)

[evc(y' ) - eVcl]A'(y-y )dy' -evc I

+ eve I A(y)
(B.I)

The second integral in Eq. (3.27) can be written as

I I L evc(Y')A'(y'-y)dy' : SL [evc(y' ) - ] A'(y'-y)dy'
Y Y evc2

L

+f
Y evc2A'(y'-y)dy '
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L
, , L

: I [euc(Y ) " euc2]A'(y'-Y) dy + euc2A(y'-y)lyY

L

I : fy [evc(Y') - evc2]A'(y'-y')dy' + e c2A(L-y)

I - e c 2 A (B.2)

I

I

I

Upon substituting Eqs. (B.I) and (B.2) into Eq. (3.27), the result can

be written as

Y

qr : el - e2 " evcl A(y) + e c2A(L-y ) + fo [e c(y') - eVcl]A'(y-y')

L

I + evclA(y) - _y [e c(y') - e c2] A'(y'-y)dy'

I

I

I

I

I

I

i

I

I

Equation (B.3) can be simplified to

- e c2A(L-y)
(B.3)

qr = el - e2 + fo [evc(Y') - eVcl

L

]A'(y-y')dy' - _ [e c(y')
Y

- e c2]A'(y'-y) dy (B.4)

Equation (B.4) is the same as Eq. (3.29) if it is written for multi-band

gaseous system. The first integral in Eq. (3.28) can be written as

Y Y

[euc(y) - e c(y')]A"(y-y')dy' : fo[evcl - evc(y')] A"(y-y')dy'0

Y
-I

0 [evc I - e c(y )]A''(y-y')dy'

I



I
I

I
I

Y

= J'o[evcl - evc(Y')]A"(Y'Y')dY ' + [evcI + evc(Y)] A'(y.y,)]oy

Y

=f
0 [evc I - euc(y')] A"(y-y,)dy, + [e c I - evc(y)]A,(O )

1
I
I
I

- [eucl " evc(.y)] A'(y)

The second integra] in Eq. (3.29) can be written as

L

I
Y [evc('y ) _ evc(y,)]A,,(y,_y)dy ' : fL

Y [evc 2 - evc(y')A' '(y'.y)dy,

I . fL
Y

! L
=f

[evc 2 - evc(y)]A,(y.y,)dy

[evc 2 - e c(y')]A,,(y,.y)dy,

I

I = j L
y [evc2 -

- E'e cz - evc(y)]A,(y,_y)iL

evc(Y')]A''(y'-y)dy,

- e i
" [evc2 vc(Y)]A (L-y)

(B.5)
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: [e c 2 - euc(y)]A,(O ) (B.6)
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Substituting Eqs. (B.5) and (B.6) into Eq. (3.28) can be written as

vq r : [e c(y ) - e cl]A'(y ) + [euc(y) - e c2]A'(L-Y)

Y
-f

O
[euc I - e c(y')]A"(y-y')dy'

- [evc I - e c(Y)]A'(0) + [euc I - evc(Y)]A'(y)

L

-f
Y

[e c 2 - e c(y')]A"(y'-y)dy'

+ [evc 2 - e c(Y)]A'(L-y) - [euc 2 - e c(Y)]A'(0)
(B.7)

Equation (B.7) can be simplified and written as

Vqr : [(e c(y) - euc I) + (e c(Y) - e c2)A'(0)

y L

+ j" [e c(y' ) - eVcl]A"(y-y')dy' + fy [evc(y') - euc2]A"(Y'-y)dy'
o (B.8)

Equation (B.8) is exactly like EQ. (3.30) if it is written for a multi-

band system.

I
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APPENDIX C

COrIPONENTS OF JACOBIAN MATRIX

In this appendix, the species matrix in the left hand side bracket

of Eqs. (4.8) and (4.14) is evaluated. The source term is function of

density, temperature and various species. In evaluating @@-_-_,the density

and temperature dependency is neglected for computational efficiency.

Eklund et al. [57] evaluated the species Jacobian matrix with and

without density and temperature dependency and found no difference in

the steady state solutions. The components of Jacobian matrix are as

follows:

1 1 1 1

ci= (_fiZmi) X_

_Wo2

@Uo2 - Kfl CH2

_WO2
- 0

aUH 0
• 2

@Wo 2

BUH
.2

@Wo2

BUoH

gm - mal

Cm3

(c.z)

(c.2)

(c.3)
Kf I CO2

r102

2 -- CoN (C.4)
- Kbl MOH



I
a_IH2 r_.H2

I -
I aWH MH

2 2

- 2 CH20aUH 0 Kb2
I o 2 MH20

aWH2 2

02 f2 cOH
- C -K

I aUH Kf I
• 2

aWH2 MH2 MH2

I aUoH - 2 r10._--_- COH - 2 CKbI Kf 2 _ COH H2

I _H20

-0

i au 0.2

aWH20

I aU.H2O- 4 Kb2 CH20

I aWH20 - 2 MH20 2

aU.H2 Kf2 MH2 COH

I aWH20 MH20

- 4 Kf2 HO--_- COH CH2

I aUoH

aWoH MOH

I @Uo2 - 2 Kf2'Io---2CH2

I a_OH I'IoH
- CH20

4 Kb2 MH20aUH20

I _WoH

- 2 Kf MOH - 2 MOH 2 ,,ScoH
I aUH2

_WoH

I -@UoH- 4 Kb2 COH - 4 Kf2 COH CH2
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(c.5)

(C.6)

(C.7)

(c.8)

(C.9)

(c.io)

(C.11)

(C.12)

(c.13)

(c.14)

(C.15)

(C.16)

I

I
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APPENDIX D

RADIATIVE FLUX EVALUATION FOR PSEUDO GRAY MODEL

This appendix shows the discretization and evaluation of the

radiative flux for the y-direction. The same thing can be applied in

the streamwise direction. Equations (3.17) and (3.18) in the y-

direction are written as follows:

d2 qr (y) 9 K2(y) qr(y ) : 3K(y)de(y)

dy2 4 dy

I I dqr(Y) IK(y) (1_ ½)qr(y ) " _ dy = 0 (D.2)
¢I y:O y:O

I Idqr IK(y) [I___ _ ½) qr(y ) + _ y_-- : 0 (D.3)
¢2 y:L y:L

(D.1)

The above equations are discretized by central differencing. The second

derivative of qr in the physical domain is discretized as

d2qr _ 2 qj+l - qj qj - qj-1

where

ayj = yj - Yj-I and

_ Yj+I " Yj

Bj Yj " Yj-I

Equations (D.I-D.3) in discrete forms are written as

(D.4)

2 qj 1 1 1 [_yjl(ll_+Bj I ) C_ I.AyjA2yj (I+Bj)

+I) +_K 2
ayj J] qj

ay_ (I+Bj)Bj
qj+l = 1.5 Kj

+l'ej
[e_j Ayj

+
ej'ej. 1

ayj ]
(D.5)



I
I

I

I
I
I

I

I
I

I
I

I
I
I

I
I

I

I

It_c_--]-_+_ _-__ ;_I

_2

The above can be written in matrix form as

A B 0 ............ 0

C A B 0 ....... 0
•
: 0 C A B

0 ............ 0 C A

qr I

qrj_ 1

q rj

RI

R2

Rj

where

AI,I : K1 Clc1 " ½) + a_ll

Ai,j : " [Ayj(I+Bj) .Ayj
j=2, J- 1

I

_,_=,j_-_-)÷

1

B1,2 = -

Bi,j

2

Ay_ (I+Bj)Bj

j:3, J

Ci ,j - A 2
yj (I+Bj)

I

TAyj

j =2, J -2

R = 0•
I
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(D.6)

(D.7)

(D.8)

I
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Rj : 1.5 Kj[,ej+IBjAyj-ej + ej -ayjej-1]

Rj : O.

j=2, J-1

The tri-diagonal matrix on the left hand side of Eq. (D.8) is solved

efficiently by the Thomas algorithm.
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APPENDIX E

BOUNDARY CONDITIONS FOR ADIABATIC W#LL TEI_PERATURES

The adiabatic wall condition is given as

@T I - @H I : 0 (E.I)
_Y y=O Bt y=O

Substituting for the total enthalpy, its gradient is written as

@H If : @--- (CpT + (u2 + v2)/2)I : 0 (E.2)
@y y:O @y ly:O

The velocity terms (u, v) are equal to zero at the boundary for the

viscous fluid. Assuming specific heat is a constant Eq. (E.2) reduce to

@--_HI : Cp @T I (E.3)
@Y y:O Ty y=O

Specific heat is a constant, therefore, temperature gradient must be

equal to zero. For Pr : I total enthalpy remain constant, while for

variable Prandtl number total enthalpy changes, the gradient remains

very small. Therefore, at the solid boundary, one can enforce the zero

enthalpy gradient by setting

Hw : HI (E.4)

Substituting the relation for total enthalpy Eq. (E.4) is written as

CpTw:CpTI÷(u_÷v_)/2 (E_)

i
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I

I

I
I

I

I

Therefore, the adiabatic wall temperature can be approximated by

Tw:TI+(u_+v_)J2Cp.

148

(E.6)


